Acelera tus Hdd

Estado
Cerrado para nuevas respuestas

nanonroses

Nuevo Miembro
Miembro
Bueno, son las 16:53 hrs y no tengo nada que hacer en este dia sabado. Revisando los post de diferentes sitios e incluso este , me he dado cuenta que no hay nada que explique bien lo que son los Sistemas raid.

Quiero acotar que este hay raid por Hardware y por Software, Luego otro dia cuando este con ganas de hacer otro review les prometo que pondre el Raid por Softare.

Todos hablan de overclocking de sacar el máximo a su tarro via fsb de bajar latencias pero no muchos se preocupan del disco duro el cual hace la diferencia en el rendimiento general de nuestro querido tarro. desde hace un tiempo varios overclockeros han formado en su sistema un sistema raid par amayor rendimiento peor en realidad que es un raid?y bueno aca ta la explicación :

Que significa Raid? Que es el sistema Raid?

Raid son las siglas de la frace inglesa "Redundant Array of Independent Disks". La cual significa matriz redundante de discos independientes .

El sistema raid consiste en unir varios discos logicos(unidades fisicas) para que queden como uno solo disco y con ello almacenar la información en forma redundante con ello Ofrece mayor tolerancia a fallos y más altos niveles de rendimiento que un sólo disco duro o un grupo de discos duros independientes.

Un sistema raid consta de dos o mas discos duros (hdd) que ante el sistema es uno solo Un RAID, para el sistema operativo, aparenta ser un sólo disco duro lógico (LUN). Los datos se desglosan en fragmentos que se escriben en varias unidades de forma simultánea. En este método, la información se reparte entre varios discos, usando técnicas como el entrelazado de bloques (RAID nivel 0) o la duplicación de discos (RAID nivel 1) para proporcionar redundancia, reducir el tiempo de acceso, y/o obtener mayor ancho de banda para leer y/o escribir, así como la posibilidad de recuperar un sistema tras la avería de uno de los discos.

La tecnología RAID protege los datos contra el fallo de una unidad de disco duro. Si se produce un fallo, RAID mantiene el servidor activo y en funcionamiento hasta que se sustituya la unidad defectuosa.

La tecnología RAID se utiliza también con mucha frecuencia para mejorar el rendimiento de servidores y estaciones de trabajo. Estos dos objetivos, protección de datos y mejora del rendimiento, no se excluyen entre sí.

RAID ofrece varias opciones, llamadas niveles RAID, cada una de las cuales proporciona un equilibrio distinto entre tolerancia a fallos, rendimiento y coste.

Todos los sistemas RAID suponen la pérdida de parte de la capacidad de almacenamiento de los discos, para conseguir la redundancia o almacenar los datos de paridad.

Que ventajas tiene un sistema raid?

Tolerancia a fallos: RAID protege contra la pérdida de datos y proporciona recuperación de datos en tiempo real con acceso interrumpido en caso de que falle un disco. Mejora del Rendimiento/ Velocidad: Una matriz consta de dos o más discos duros que ante el sistema principal funcionan como un único dispositivo. Los datos se desglosan en fragmentos que se escriben en varias unidades de forma simultánea. Este proceso, denominado fraccionamiento de datos, incrementa notablemente la capacidad de almacenamiento y ofrece mejoras significativas de rendimiento. RAID permite a varias unidades trabajar en paralelo, lo que aumenta el rendimiento del sistema.

Mayor Fiabilidad:Las soluciones RAID emplean dos técnicas para aumentar la fiabilidad:
  • la redundancia de datos
  • la información de paridad
La redundancia implica el almacenamiento de los mismos datos en más de una unidad. De esta forma, si falla una unidad, todos los datos quedan disponibles en la otra unidad, de inmediato. Aunque este planteamiento es muy eficaz, también es muy costoso, ya que exige el uso de conjuntos de unidades duplicados. El segundo planteamiento para la protección de los datos consiste en el uso de la paridad de datos. La paridad utiliza un algoritmo matemático para describir los datos de una unidad. Cuando se produce un fallo en una unidad se leen los datos correctos que quedan y se comparan con los datos de paridad almacenados por la matriz. El uso de la paridad para obtener fiabilidad de los datos es menos costoso que la redundancia, ya que no requiere el uso de un conjunto redundante de unidades de disco.

Alta Disponibilidad:RAID aumenta el tiempo de funcionamiento y la disponibilidad de la red. Para evitar los tiempos de inactividad, debe ser posible acceder a los datos en cualquier momento. La disponibilidad de los datos se divide en dos aspectos: la integridad de los datos y tolerancia a fallos. La integridad de los datos se refiere a la capacidad para obtener los datos adecuados en cualquier momento. La mayoría de las soluciones RAID ofrecen reparación dinámica de sectores, que repara sobre la marcha los sectores defectuosos debidos a errores de software. La tolerancia a fallos, el segundo aspecto de la disponibilidad, es la capacidad para mantener los datos disponibles en caso de que se produzcan uno o varios fallos en el sistema.

En un sistema raid hay varios tipos de “Raid” de ellos estan:


  • RAID 0
  • RAID 1
  • RAID 0+1/ RAID 0/1 ó RAID 10
  • RAID 2
  • RAID 3
Raid-0: Disk Striping "La más alta transferencia, pero sin tolerancia a fallos".

También conocido como "separación ó fraccionamiento/ Striping". Los datos se desglosan en pequeños segmentos y se distribuyen entre varias unidades. Este nivel de "array" o matriz no ofrece tolerancia al fallo. Al no existir redundancia, RAID 0 no ofrece ninguna protección de los datos. El fallo de cualquier disco de la matriz tendría como resultado la pérdida de los datos y sería necesario restaurarlos desde una copia de seguridad. Por lo tanto, RAID 0 no se ajusta realmente al acrónimo RAID. Consiste en una serie de unidades de disco conectadas en paralelo que permiten una transferencia simultánea de datos a todos ellos, con lo que se obtiene una gran velocidad en las operaciones de lectura y escritura. La velocidad de transferencia de datos aumenta en relación al número de discos que forman el conjunto. Esto representa una gran ventaja en operaciones secuenciales con ficheros de gran tamaño. Por lo tanto, este array es aconsejable en aplicaciones de tratamiento de imágenes, audio, vídeo o CAD/CAM, es decir, es una buena solución para cualquier aplicación que necesite un almacenamiento a gran velocidad pero que no requiera tolerancia a fallos. Se necesita un mínimo de dos unidades de disco para implementar una solución RAID 0.

Raid-1: Mirroring "Redundancia. Más rápido que un disco y más seguro"


RAID 0+1/ RAID 0/1 ó RAID 10:
"Ambos mundos":
Combinación de los arrays anteriores que proporciona velocidad y tolerancia al fallo simultáneamente. El nivel de RAID 0+1 fracciona los datos para mejorar el rendimiento, pero también utiliza un conjunto de discos duplicados para conseguir redundancia de datos. Al ser una variedad de RAID híbrida, RAID 0+1 combina las ventajas de rendimiento de RAID 0 con la redundancia que aporta RAID 1. Sin embargo, la principal desventaja es que requiere un mínimo de cuatro unidades y sólo dos de ellas se utilizan para el almacenamiento de datos. Las unidades se deben añadir en pares cuando se aumenta la capacidad, lo que multiplica por dos los costes de almacenamiento. El RAID 0+1 tiene un rendimiento similar al RAID 0 y puede tolerar el fallo de varias unidades de disco. Una configuración RAID 0+1 utiliza un número par de discos (4, 6, 8) creando dos bloques. Cada bloque es una copia exacta del otro, de ahí RAID 1, y dentro de cada bloque la escritura de datos se realiza en modo de bloques alternos, el sistema RAID 0. RAID 0+1 es una excelente solución para cualquier uso que requiera gran rendimiento y tolerancia a fallos, pero no una gran capacidad. Se utiliza normalmente en entornos como servidores de aplicaciones, que permiten a los usuarios acceder a una aplicación en el servidor y almacenar datos en sus discos duros locales, o como los servidores web, que permiten a los usuarios entrar en el sistema para localizar y consultar información. Este nivel de RAID es el más rápido, el más seguro, pero por contra el más costoso de implementar.

Raid-2:"Acceso paralelo con discos especializados. Redundancia a través del código Hamming"

El RAID nivel 2 adapta la técnica comúnmente usada para detectar y corregir errores en memorias de estado sólido. En un RAID de nivel 2, el código ECC (Error Correction Code) se intercala a través de varios discos a nivel de bit. El método empleado es el Hamming. Puesto que el código Hamming se usa tanto para detección como para corrección de errores (Error Detection and Correction), RAID 2 no hace uso completo de las amplias capacidades de detección de errores contenidas en los discos. Las propiedades del código Hamming también restringen las configuraciones posibles de matrices para RAID 2, particularmente el cálculo de paridad de los discos. Por lo tanto, RAID 2 no ha sido apenas implementado en productos comerciales, lo que también es debido a que requiere características especiales en los discos y no usa discos estándares.

Debido a que es esencialmente una tecnología de acceso paralelo, RAID 2 está más indicado para aplicaciones que requieran una alta tasa de transferencia y menos conveniente para aquellas otras que requieran una alta tasa de demanda I/O.


Raid-3:"Acceso síncrono con un disco dedicado a paridad"

Dedica un único disco al almacenamiento de información de paridad. La información de ECC (Error Checking and Correction) se usa para detectar errores. La recuperación de datos se consigue calculando el O exclusivo (XOR) de la información registrada en los otros discos. La operación I/O accede a todos los discos al mismo tiempo, por lo cual el RAID 3 es mejor para sistemas de un sólo usuario con aplicaciones que contengan grandes registros.

RAID 3 ofrece altas tasas de transferencia, alta fiabilidad y alta disponibilidad, a un coste intrínsicamente inferior que un Mirroring (RAID 1). Sin embargo, su rendimiento de transacción es pobre porque todos los discos del conjunto operan al unísono.

Espero haber ayudado en el conocimiento mas de su Hardware
 

nanonroses

Nuevo Miembro
Miembro
Que diferencia hay entre el raid por software y el raid por hardware

Bueno Existen dos tipos de tecnología RAID:
  • Software
  • Hardware
Cada uno de ellos tiene sus ventajas y sus inconvenientes.

El RAID basado en hardware puede ser basado en host o RAID externo.

La ventaja de los RAID basados en hardware es su independencia de la plataforma o sistema operativo, ya que son vistos por éste como un gran disco duro más, y además son mucho más rápidos, entre otras ventajas.

El software RAID puede ser una opción apropiada cuando el factor de decisión es el costo inicial. Sin embargo, cuando se considera el costo total de propiedad, los costes ocultos del software RAID pueden convertirlo en la opción más cara a largo plazo. Este coste más elevado de propiedad del RAID basado en software, es debido a la productividad más baja del usuario, costes más altos de gestión y reconfiguración. Sistemas operativos de redes como NetWare y Windows NT incluyen software RAID integrado. Todas las funciones RAID son manejadas por la CPU, lo que puede ralentizar en exceso otras aplicaciones. Este tipo de RAID no ofrece protección para el sistema operativo, a menos que se añada una unidad adicional a la matriz. Además, el RAID basado en software no cuenta con importantes características, como el intercambio de unidades de repuesto en funcionamiento, matrices de arranque y funciones de gestión remota. La utilización excesiva de la CPU es su principal inconveniente. Las soluciones RAID dependen del software para controlar la matriz.

Sin embargo, las matrices basadas en software ejecutan todos los comandos de E/S y los algoritmos con numerosas operaciones matemáticas en la CPU del host. Esto puede ralentizar el rendimiento del sistema, ya que aumenta el tráfico del bus PCI del host y la utilización e interrupciones de la CPU. El uso del software RAID puede degradar el rendimiento del sistema hasta un nivel en el que resulta más costoso actualizar.

A diferencia de las matrices basadas en software, las que están basadas en hardware utilizan controladores RAID que se conectan a una ranura PCI del host. Con tan sólo una diferencia mínima de precio con respecto al coste del controlador que se necesita para el software RAID, el hardware RAID ofrece ventajas significativas en lo que respecta a:
  • Rendimiento
  • Integridad de los datos
  • Gestión de matrices
El hardware RAID basado en host supone un mayor rendimiento que el RAID basado en software, sin embargo la solución más profesional y de gama alta es la solución hardware RAID externa. En este caso, las operaciones RAID se llevan a cabo mediante un controlador situado en el subsistema de almacenamiento RAID externo, que se conecta al servidor mediante un adaptador de bus de host SCSI o Fibre Channel. Las soluciones RAID externas son independientes del sistema operativo, aportan mayor flexibilidad y permiten crear sistemas de almacenamiento de gran capacidad para servidores de gama alta.

Y bueno ahora las tipicas preguntas:

¿Porqué usar RAID?

Las operaciones de I/O a disco son relativamente lentas, primordialmente debido a su carácter mecánico. Una lectura o una escritura involucra, normalmente, dos operaciones. La primera es el posicionamiento de la cabeza lecto/grabadora y la segunda es la transferencia desde o hacia el propio disco.

El posicionamiento de la cabeza está limitado por dos factores: el tiempo de búsqueda (seek time) y el retardo por el giro del disco hasta la posición de inicio de los datos (latencia rotacional). La transferencia de datos, por su parte, ocurre de a un bit por vez y se ve limitada por la velocidad de rotación y por la densidad de grabación del medio.

Una forma de mejorar el rendimiento de la transferencia es el uso de varios discos en paralelo, esto se basa en el hecho de que si un disco solitario es capaz de entregar una tasa de transferencia dada, entonces dos discos serían capaces, teóricamente, de ofrecer el doble de la tasa anterior, lo mismo sucedería con cualquier operación.

La adición de varios discos debería extender el fenómeno hasta un punto a partir del cual algún otro componente empezará a ser el factor limitante.

Muchos administradores o encargados de sistemas intentan llevar a cabo esta solución en forma básicamente manual, distribuyendo la información entre varios discos de tal forma de intentar asegurar una carga de trabajo similar para cada uno de ellos. Este proceso de "sintonía" podría dar buenos resultados de no ser por dos factores principales:
  • 1:No consigue mejorar las velocidades de transferencia de archivos individuales, sólo mejora la cantidad de archivos accedidos en forma concurrente.
  • 2: Es obvio que el balance no es posible de mantener en el tiempo debido a la naturaleza dinámica de la información.
Una forma bastante más efectiva de conseguir el objetivo es el uso de un arreglo de discos, el cual según la definición del RAID Consultory Board es "una colección de discos que integran uno o más subsistemas combinados con un software de control el cual se encarga de controlar la operación del mismo y de presentarlo al Sistema Operativo como un sólo gran dispositivo de almacenamiento". Dicha pieza de software puede ser integrada directamente al Sistema Operativo o estar en el propio arreglo; así como el arreglo puede ser interno o externo.

Novell Netware incluye, desde hace algún tiempo, soporte para arreglos de discos. El espejado y la duplicación de discos son ejemplos de arreglos basados en software.

Las soluciones de arreglos basadas en hardware son principalmente implementadas mediante el uso de controladoras SCSI (Small Computer System Interface) especializadas, las cuales a menudo están dotadas de procesadores propios para liberar a la CPU del sistema de la tarea de control y de cachés para mejorar aún más el desempeño.

Para Netware cualquiera de las dos soluciones, software o hardware, será visualizada como un único y gran disco virtual.

Así pues un arreglo de discos ofrecerá un mejor desempeño debido a que dividirá en forma automática los requerimientos de lectura/escritura entre los discos que lo conforman. Por ejemplo, si una operación de lectura/escritura involucra a cuatro bloques de 4 Kb cada uno, entonces un arreglo de 4 discos podría, teóricamente, entregar cuatro veces la tasa de operación de un disco único, esto debido a que el disco único sólo podría atender a un bloque en forma simultánea, mientras que en el arreglo cada disco podría manejar un sólo bloque operando ellos al mismo tiempo

En la práctica, sin embargo, dichos niveles no se obtienen debido, principalmente, a la carga de trabajo inherente al control del propio arreglo. Además el uso de varios discos se emplea para construir cierto nivel de redundancia de los datos y es este nivel de redundancia y la forma de implementarlo lo que crea los niveles de RAID.

2-¿Quién debería usar los RAID?

Aquellos de ustedes que necesiten controlar grandes cantidades de datos (como los administradores de sistemas), se beneficiarían del uso de la tecnología RAID. La primera razón para usar RAID es:
aumento de la capacidad de archivo
gran eficacia en recuperarse de un fallo del sistema

Bueno esa seria todo con respecto a los sitemas RAID, espero que los hayan entendido y que sirva de algo.
Saludos.
 
Estado
Cerrado para nuevas respuestas
Arriba Pie